A Collaborative Approach to Integrating Climate Science into State Wildlife Action Plans

Brian W. Miller, Jeffrey T. Morisette, Colin Talbert, Marian Talbert, Tracy Holcombe, Catherine Jarnevich, Michelle Fink, Karin Decker, Joe Barsugli, Andrea Ray
Background: Habitat Suitability Modeling
Background: Collaboration
Objectives

• **Process**: Describe how involving resource managers can improve climate change research
Objectives

• **Process**: Describe how involving resource managers can improve climate change research

• **Research & Communication Strategy**: Better understand how climate change research can be made more relevant to the needs of resource managers
Objectives

• **Process**: Describe how involving resource managers can improve climate change research

• **Research & Communication Strategy**: Better understand how climate change research can be made more relevant to the needs of resource managers

• **Workspace**: Document the utility of a collaborative workspace
Methods

- SWAP
- Colorado Natural Heritage Program
- Colorado Parks & Wildlife
- 9 Habitats
Methods

• Workshop
 – Day 1: technical modeling
 – Day 2: presentations, feedback, revisions
Methods

• Workshop
 – Day 1: technical modeling
 – Day 2: presentations, feedback, revisions

• Participant-observation
 – Pre- & post-workshop questionnaires (expectations & evaluations)
 – Filming & observation
Methods

• Workshop
 – Day 1: technical modeling
 – Day 2: presentations, feedback, revisions

• Participant-observation
 – Pre- & post-workshop questionnaires (expectations & evaluations)
 – Filming & observation

• Expert Elicitation
 – Iteration with CNHP & CPW
Methods

• Resource for Advanced Modeling (RAM)
 – 15-20 people
• Mini-cluster
• VisWall
 – 24 monitors

www.fort.usgs.gov/ram/
Results: Process

• Appropriate use of climate data
• Modeling capabilities, limits, do’s & don’t’s

“Today has been important to me. I’ve learned a lot just in terms of the climate modeling…

“Can I ask a layperson question?”

“Bringing together a diverse set of people (including ecologist, climatologist, modelers, managers, and decision makers) to be part of this process is fantastic and will probably go a long ways in terms of relationship building.”
Results: Process

• “I am likely to use the output of habitat suitability models if no resource managers (i.e., only scientists) participated.”
 – Pre-workshop: 6 of 8 agreed or strongly agreed
 – Post-workshop: 3 of 8 agreed or strongly agreed
Results: Process

• “I am likely to use the output of habitat suitability models if no resource managers (i.e., only scientists) participated.”
 – Pre-workshop: 6 of 8 agreed or strongly agreed
 – Post-workshop: 3 of 8 agreed or strongly agreed

• “I am likely to use the output of habitat suitability models if a resource manager (other than myself) participated.”
 – Post-workshop: 7 of 8 agreed or strongly agreed
Results: Process

• What to present
 – Fundamental vs. realized niche

“Whether it’s this pixel versus this pixel, I don’t think that that matters... [we need] a more descriptive way of saying, ‘this is how things may change, and these are the drivers of those systems, and this is how those drivers are going to change’ -- precipitation, temperature, those kinds of things.”
Results: Process

• What to present
 – Fundamental vs. realized niche

• How to present it
 – Narratives
 – Color Schemes

“Whether it’s this pixel versus this pixel, I don’t think that that matters... [we need] a more descriptive way of saying, ‘this is how things may change, and these are the drivers of those systems, and this is how those drivers are going to change’ -- precipitation, temperature, those kinds of things.”
Results:

Research & Communication Strategy

• Compiled list of potential daily climate predictors
• Modeled habitat with historical climate
• Iterated with CPW (habitat coordinators) to determine ecologically relevant parameters
Results:
Research & Communication Strategy

• 2050 projections for top 5 climate predictors for each habitat
 – Selected 2 GCMs (Global Climate Models) for each predictor that captured the range of variation for the middle 80% of GCMs
Results:
Research & Communication Strategy

- Capture uncertainty while providing reasonable planning end-points
2050 projected change in total winter precipitation, driest scenario

Spruce-Fir
Precipitation change (cm)

-8 - 7
-7 - 6
-6 - 5
-5 - 4
-4 - 3
-3 - 2
-2 - 1
-1 - 0
0 - 1
Results: Workspace

• Technical Capacity
 – Fast turnaround
 – Presentations & Screen Sharing
Results: Workspace

• Technical Capacity
 – Fast turnaround
 – Presentations & Screen Sharing

• Space & format
 – Engagement
 • Breakout groups
 • Discussion
 • Informal Q&A
Conclusions

• **Workspace**
 – Efficiency
 – Engagement
Conclusions

• **Workspace**
 – Efficiency
 – Engagement

• **Process**
 – Strengths & limitations of climate data & habitat suitability modeling
 – Concerns about the *certainty* of model outputs, but confidence in the *quality* of model outputs, as long as managers involved
Conclusions

• **Workspace**
 – Efficiency
 – Engagement

• **Process**
 – Strengths & limitations of climate data & habitat suitability modeling
 – Concerns about the *certainty* of model outputs, but confidence in the *quality* of model outputs, as long as managers involved

• **Research & Communication Strategy**
 – Co-developed an iterative & data-directed form of expert elicitation
 – Choice of variables corroborated by habitat models, experts, & lit.
 – More intuitive & relevant variables that matched advice of climatologists
Conclusions

• Engage the land management community rather than provide “right” answer

• Increase chance of producing a robust & useful product

“However painful the process, we were able to agree on a path forward. It was essential to have participants from all groups together for that agreement.”
Acknowledgements
Current climatic range for nine habitat types and projected mid-century region of change

* Circles are historic means with error bars representing one S.D.
* Squares represent the middle 80% percent of the range of mid-century projections
2050 projected change in mean spring temperature, hottest scenario

Shortgrass

Temperature change (°C)

- 1.8 - 2.0
- 2.0 - 2.2
- 2.2 - 2.4
- 2.4 - 2.6
- 2.6 - 2.8
- 2.8 - 3.0
- 3.0 - 3.2